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Universal scaling of the chiral condensate in finite-volume gauge theories
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We confront exact analytical predictions for the finite-volume scaling of the chiral condensate with data
from quenched lattice gauge theory simulations. Using staggered fermions in both the fundamental and adjoint
representations, and gauge groups SU~2! and SU~3!, we are able to test simultaneously all of the three chiral
universality classes. With overlap fermions we also test the predictions for gauge field sectors of nonzero
topological charge. Excellent agreement is found in most cases, and the deviations are understood in the others.

PACS number~s!: 11.15.Ha, 11.30.Fs, 12.38.Aw, 12.38.Gc
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I. INTRODUCTION

The constraints imposed by chiral symmetry breaking
gauge theories can be surprisingly strong. Low-energy th
rems, the dynamics of pseudo Goldstone bosons in an ex
sion around the zero-momentum limit, and the whole fram
work of effective chiral Lagrangians are examples of th
Generally these constraints are imposed on the effective
energy degrees of freedom only. It is much more surpris
that both spontaneous chiral symmetry breaking and the
plicit breaking of chiral symmetry due to the U~1! anomaly
also can be used to give exact analytical predictions for
underlying fermion degrees of freedom. This is possib
when one restricts the gauge theory to a large but finite fo
volumeV obeying the inequality@1#

V!
1

mp
4

, ~1!

wheremp is the pseudo Goldstone boson mass. In this ra
extreme limit the QCD partition function depends on t
fermion massesmi only in the particular combinationm i
[VSmi , whereS is the chiral condensate. While the fou
volume V must be taken to infinity in order to obtain an
lytical predictions, a finite-size scaling regime is th
achieved by sending fermion massesmi to zero at just such a
rate that them i ’s remain fixed. This is an exact finite-siz
scaling region in the same sense as near critical points:
can reach as accurate agreement as we wish by sim
choosing a sufficiently large four-volumeV. In contrast to
what one is accustomed to in statistical mechanics, the fin
size scaling functions are in this case knownexactly, both in
shape and absolute normalization, once one has the valu
the infinite-volume chiral condensateS.

One of the remarkable aspects of the finite-size sca
region ~1! is its relation to random matrix theory~RMT!
results that have proven to be universal@2–4#. There is a
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beautiful classification of the possible chiral symme
breaking patterns for different gauge groups and color rep
sentations of the fermions in terms of the classical rand
matrix theory ensembles labeled by the so-called Dyson
dex. This leads to three major universality classes@5#. For
the quenched case, the analytical prediction for the ma
dependent chiral condensate was in fact first obtained
Verbaarschot@6# using the exact formula for the microscop
Dirac operator spectrum as derived from random ma
theory. It has later become clear that these results can als
derived from finite-volume partition functions alone@7#. A
powerful analytical technique uses fully or partial
quenched~supersymmetric! chiral Lagrangians@8#. Lattice
gauge simulations have already shown nice agreement
the exact analytical predictions for the microscopic Dir
operator spectrum associated with all three different univ
sality classes@9–11# using staggered fermions. It has be
particularly challenging to see also the detailed analyti
predictions in gauge field sectors of fixed nonzero topolo
cal chargen, and this has very recently been achieved us
perfect actions@12# and overlap fermions@13#.

The purpose of this paper is to perform a systematic se
of lattice gauge theory tests of the exact predictions relate
the mass-dependent chiral condensates and one of the c
susceptibilities. For the case of gauge group SU~3! and stag-
gered fermions in the fundamental representation, such
analysis was first performed@6# on the basis of lattice gaug
theory data from the Columbia group@14#. These data, base
on configuration withNf52 dynamical fermions, were take
for finite temperature lattice volumes. The dynamical ferm
ons were rather heavy and not obeying the inequality~1!. For
this reason the valence fermions were taken to be m
lighter, and on their mass scale the configurations were
fact to be considered quenched. As there are very accu
estimates for the infinite-volume chiral condensateS for the
same theory at differentb values @10#, we now have
parameter-free predictions at theseb values. Furthermore
we can probe much larger physical volumes~and hence ob-
©2000 The American Physical Society03-1
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tain higher accuracy!, and our result will not be contami
nated by finite-temperature effects. This case correspond
the chiral unitary ~CUE! random matrix theory ensemble
We next turn to gauge group SU~2! and staggered fermion
in the fundamental and adjoint representations. The for
case corresponds at our finite lattice spacings to the ch
symplecticensemble~CSE! in the random matrix theory
classification, while the latter corresponds to the chiralor-
thogonal ensemble~COE!. In this way we cover all three
major universality classes. However, staggered fermions
fer from two significant defects in this context. First, at o
finite lattice spacings the staggered fermions with SU~2!
gauge group do not fall into the right universality classes
compared with fermions in the continuum@3#. Second, arti-
facts due to finite lattice spacings prevent us from test
more than the gauge field sector of topological chargen
50 with these fermions. Both of these shortcomings can
overcome by the use of more sophisticated fermion formu
tions. We shall here provide lattice data obtained with ov
lap fermions@15#. Here finite-lattice-spacing analogues
continuum relations for the chiral condensate in nontriv
topological backgrounds can be established@16#. We thus
simultaneously achieve both the correct identification w
respect to continuum universality classes and correct r
tionships in nontrivial topological gauge field sectors. W
shall throughout restrict ourselves to the quenched limitNf
50. Analytically this limit is readily taken, both from ran
dom matrix-theory and from the~quenched! finite-volume
partition functions, and the answers have been shown
agree. There are thus precise and unequivocal analytical
dictions also for this case.

For which observables do we have exact analytical p
dictions? Essentially all quantities for which the partitio
function itself Z($m i%), perhaps extended with addition
fermion species, is a generating function. The simplest qu
tity to focus on is obviously the mass-dependent chiral c
densate itself, which in the quenched theory simply read

S~m!

S
[

]

]m
ln@Z~m!#. ~2!

HereS is the genuine chiral condensate in the massless l
of the infinite-volume theory, andm5VSm is the micro-
scopically rescaled quenched ‘‘valence’’ fermion massm.
Because of the relation~at fixed topological chargen!

Sn~m!

S
52mE

0

`

dz
rs

~n!~z!

z21m2
1

unu
m

, ~3!

the mass-dependent chiral condensate tests a massive
tral sum rule for the microscopic densityrs

(n)(z;m) of the
Dirac operator spectrum@2,17#.1 We shall here restrict our
selves to the quenched cases, wherers

(n)(z) is mass indepen
dent~and the partially quenched cases are completely an

1In what follows we shall for convenience, to avoid absolu
value signs, always considern non-negative.
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gous!. This is one way in which the analytical prediction fo
the quenched limit can be obtained~the other proceeds di
rectly from the quenched chiral Lagrangian@8#!. In numeri-
cal simulations the condensate measurements are of co
performed very easily~from the trace of the propagator!,
without ever having to compute the Dirac operator spectr
itself. Nevertheless, we have sometimes found it conven
to supplement direct measurements by appropriate sums
eigenvalues. In this connection it is important to stress
following point. Because of Eq.~3!, we are in fact concerned
with tests of the analytical predictions forrs(z,m). The ad-
vantage of usingSn(m) to test these predictions is that it i
a quantitative manner probes the microscopic spectral d
sity in different regimes. For instance, by going to very sm
values ofm the condensate becomes very sensitive to
precise eigenvalue distribution aroundz;m. In particular,
for the CUE~in the n50 sector! and the COE~in the n50
and n51 sectors!, Sn(m), as we shall see below, is ex
tremely sensitive to the low-z distribution of the smallest
nonzero eigenvalues. This effect can be enhanced by con
ering in addition an observable such as a chiral suscept
ity, as we shall discuss below.

Considering the expression~3! for the chiral condensate
one might wonder about the necessity of subtractions. A
all, even in free field theory the spectral density of the Dir
operator goes liker(l);l3, and the spectral representatio
of the condensate is thus ultraviolet divergent. There are
such divergences in the finite-volume scaling regime con
ered here, and we should make no subtractions in the ch
condensate either. Although this point was already explai
in the paper of Leutwyler and Smilga@1#, it is worthwhile to
repeat it here. The explanation is as follows: What we
computing here is not the conventionally defined chiral co
densate. We are taking a correlated limit ofV→` and m
→0 such thatm[mSV is kept fixed. In this limit the con-
densateS(m) receives contributions only from Dirac opera
tor eigenvalues on the scale ofm!LQCD and below. The
ultraviolet end of the Dirac operator spectrum is not
nored: the corrections~and hence subtractions! from this
region are of the kindmL2 and m3 ln L, where L is the
ultraviolet cutoff. In the scaling region wherem5mSV is
kept fixed, these terms are suppressed by 1/V and 1/V3, re-
spectively. In other words, the ultraviolet end of the Dir
operator spectrum in this region enters only as 1/V correc-
tions to the main predictions. In addition, there are of cou
also 1/V corrections from the neglect of nonstatic modes
the effective partition function, so all of these 1/V correc-
tions are effectively beyond our control. Consistent with th
observation is the fact that 1/V corrections are nonuniversa
in the random matrix theory context@18#. Here we are inter-
ested only in the leading, universal, predictions forV→`.

Corresponding to the three different universality class
there are three distinct predictions for the mass-depen
condensate. We shall here give the predictions for ga
field sectors of fixed topological indexn and for any number
of massless flavorsNf . First, for gauge groups SU(Nc) with
Nc>3 and fermions in the fundamental representation
prediction reads@6#

-

3-2
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Sn
CUE~m!

S
5m@ I Nf1n~m!KNf1n~m!

1I Nf1n11~m!KNf1n21~m!#1
n

m
, ~4!

where I n(x) and Kn(x) are the two modified Bessel func
tions. This is the universality class of the CUE in the rand
matrix theory classification. Staggered fermions in the sa
representation and for the same gauge groups are her
longing to the same universality class as continuum fer
ion

09450
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ons. In this case the explicit form of the microscopic spec
densityrs

(n)(z;m i) of also Nf massivefermions ~of masses
m i) is known, so that one has also available complete a
lytical predictions for partially quenched chiral condensa
with massive fermions. These can also be derived dire
from partially quenched chiral Lagrangians~see Ref.@8#!.

For the CSE universality class, where the microsco
spectral density forNf massless fermions in a sector of arb
trary topological chargen has been given in very compac
form in @9#, we have been able to reduce the chiral cond
sate to the following. WhenNf is evenwe find
ge group
Sn
CSE~m!

S
52m@ I Nf12n~2m!KNf12n~2m!1I Nf12n11~2m!KNf12n21~2m!#1

n

m
22~21!n1Nf /2KNf12n~2m!

3FmS I 0~2m!2
p

2
@L0~2m!I 1~2m!2L1~2m!I 0~2m!# D2 (

k50

n1Nf /221

~21!kI 2k11~2m!G , ~5!

whereLn(x) denotes thenth-order modified Struve function. ForNf odd we find

Sn
CSE~m!

S
52m@ I Nf12n~2m!KNf12n~2m!1I Nf12n11~2m!KNf12n21~2m!#

1
n

m
2~21!n1~Nf11!/2KNf12n~2m!F12I 0~2m!22 (

k51

n1~Nf21!/2

~21!kI 2k~2m!G . ~6!

These predictions pertain to gauge group SU(Nc) with Nc>2 and fermions in the adjoint representation~for continuum
fermions!. This is also the universality class relevant for staggered fermions in the fundamental representation and gau
SU~2!. Finally, the universality class of the COE predicts a chiral condensate of the following form. Forn oddwe find, using
the recent compact expression for the microscopic spectral density of that case@19#,

Sn
COE~m!

S
5m@ I 2Nf1n~m!K2Nf1n~m!1I 2Nf1n11~m!K2Nf1n21~m!#1

n

m

1~21!Nf ~n21/2!F I 2Nf1n~m!K0~m!12 (
k51

Nf1~n21!/2

~21!kI 2Nf1n~m!K2k~m!G , ~7!

while for n evenwe have been able to reduce the answer to

Sn
COE~m!

S
5m@ I 2Nf1n~m!K2Nf1n~m!1I 2Nf1n11~m!K2Nf1n21~m!#1

n

m
1~21!Nf1n/2

p

2
@ I 2Nf1n~m!2L2Nf1n~m!#

1 (
k50

Nf1n/221

~21!k
~2Nf1n22k23!!!

~2Nf1n12k11!!!
m2k112~21!Nf 1n/2K2Nf1n~m!

3FmS I 0~m!2
p

2
@L0~m!I 1~m!2L1~m!I 0~m!# D22 (

K50

Nf1n/221

~21!kI 2k11~m!G , ~8!
ate
ors
where, with the usual convention, (21)!![1. Equations~7!
and~8! give the chiral condensate in SU~2! gauge theory and
continuum fermions in the fundamental~pseudoreal! repre-
sentation. They also correspond to gauge group SU(Nc) with
Nc>2 and staggered fermions in the adjoint representat
 .

II. STAGGERED FERMIONS

Analytical predictions for the quenched chiral condens
and higher chiral susceptibilities are all restricted to sect
3-3
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FIG. 1. The condensate for staggered ferm
ons in ~a! the fundamental representation o
SU~3! as a function of the fermion mass,~b! re-
scaled form as a function ofm5mSV, ~c! the
fundamental representation of SU~2!, and~d! the
adjoint representation of SU~2!.
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of fixed gauge field topology.2 As mentioned above, with
staggered fermions lattice simulations of the chiral cond
sate at realistic values of the coupling do not see any trac
gauge field sectors except the one of topological chargn
50 @6#. The comparisons one can make are therefore slig
limited. On the other hand, computationally the stagge
fermion formulation is extremely convenient for our pu
poses. We shall therefore start with a systematic study of
chiral condensate based on staggered fermions.

For the determination of the staggered quenched ch
condensate, we used a stochastic estimate method for se
b in SU~2! and SU~3! with fermions in the fundamental an
adjoint representations. We are interested in solving the
ear system of equationsD†(m)D(m)h(m)5(D†(0)D(0)
1m2)h(m)5b for some stochastic sourceb and the stag-
gered Dirac operatorD. We can relate the solutionh(m) in
a fixed background gauge field to the final quantities we
interested in with the following expressions:

^buD21~m!ub&5mb†h~m!,
~9!

^bu@D†~m!D~m!#211D22~m!ub&52m2h†~m!h~m!.

A multishift conjugate method@20# was used to solve the
required linear system for several fermion masses.
supplemented these measurements with computations o

2With dynamical fermions one can analytically perform the
quired sum over topology@1#, but this is not possible in the
quenched case without additional assumptions about the dist
tion of winding numbers@18#.
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lowest 50 eigenvalues of the staggered Dirac operator, t
cally in 32-bit single precision. These eigenvalues were u
to compute a truncated spectral sum approximation for
condensates at small fermion masses. The truncated spe
sum method greatly improved the statistics. However, for
small lattices (44 and 64) typically on the order of 100000
configurations were needed. As will be discussed below,
reasonably large amount of statistics was necessary to
equately sample the lowest eigenvalue distribution of
Dirac operator probed by the small fermion masses used
our tests of the predictions of chiral random matrix theory.
addition, for the orthogonal ensemble cases, double preci
was used for the eigenvalues.

Consider first the gauge group SU~3! and staggered fer
mions in the fundamental representation. The universa
class is thus that of the CUE, the same as in the continu
In Fig. 1~a! we show the quenched chiral condensate a
function of the valence massm for a few differentb values
and various different lattice sizes. At the shown values of
lattice couplingb the infinite-volume chiral condensateS
has already been determined to high accuracy from indep
dent studies@10#. This means that the finite-size scalin
function Sn(m) of Eq. ~4! is parameter free. The first obse
vation is that all the different data roughly collapse down
one universal scaling curve, once plotted againstm5mSV
as in Fig. 1~b!. And the analytical prediction~4! for this
curve is remarkably well reproduced by our lattice data. T
of course just confirms on these lattice volumes and thesb
values the observation first made by Verbaarschot@6# on the
basis of data from the Columbia group. It is particularly i
teresting to look at the small-mass behavior. If we expa
the condensate in Eq.~4! for small m, we get~for n50)

-

u-
3-4
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S0
CUE~m!

S
52F lnS m

2 D1g2
1

2Gm1O~m3!, ~10!

whereg is Euler’s constant. There is the expected term lin
in m, but in addition a logarithmic correction of the formm
ln(m). This latter term, which should not be confused w
so-called ‘‘quenched chiral logarithm,’’ arises from the i
frared part of the integral in Eq.~3! and is thus very sensitive
to the falloff of rs(z) nearz;0. Indeed, for the CUE the
quenched microscopic spectral density reads@3#

rs
~0!~z !5

z

2
@J0~z!21J1~z!2#, ~11!

which for small values ofz behaves likers
(0)(z)5z/2

2z3/81¯ . The leading linear term here is responsible
them ln(m) piece in Eq.~10!. The CUE cases withn>1 lend
themselves more easily to an analysis of the low-mass
havior of the condensate, since the integrals

E
0

`

dz
rs

~n!~z!

z2

in those cases are convergent. We can thus make the fol
ing rewriting:

Sn~m!

S
52mE

0

`

dz
rs

~n!~z!

z21m2 1
n

m

52mE
0

`

dz rs
~n!~z!F 1

z22
m2

z2~z21m2!G1
n

m
,

~12!

and consider each term separately. It follows that the lead
linear, term in the expansion ofSn(m) for n>1 has as co-
efficient the first Leutwyler-Smilga sum rule~as extended to
this quenched case! @1,5#:

Sn
CUE~m!

S
5

n

m
12mK (

n.0

1

zn
2L

n

1¯

5
n

m
1

1

2n
m1¯ . ~13!

We next turn to gauge group SU~2! and staggered fermi
ons in the fundamental representation. The analytical pre
tion is here that of the CSE universality class, with a chi
condensate as in Eqs.~5! and~6!. We again chooseb values
for which the infinite-volume chiral condensateS is known
to high accuracy, so that the analytical predictions~5! and~6!
also are parameter free. One remark is in order here: in
CSE universality class every eigenvalue is doubly dege
ate. The analytical predictions from RMT consider only o
of the eigenvalues from each degenerate pair. A stocha
estimate of the condensate, on the other hand, contains
contribution from both eigenvalues of each pair and is thu
factor two larger. We have therefore divided the stocha
estimate of the condensate by this factor of 2 in order
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compare to the analytical prediction. In Fig. 1c we show h
all data nicely collapse down on the universal scaling fu
tion ~5! for Nf50. The agreement is seen to be extraordin
ily good over more than three orders of magnitude.

The microscopic spectral density of that case@9# reads as
follows for Nf50:

rs
~0!~z !5zJ1~2z!22

pz

2
@H0~2z!J0~2z!J1~2z!

2H1~2z!J0~2z!2#, ~14!

where Hn(x) is the nth-order Struve function. Since th
small-z expansion is of the formrs

(0)(z)5z3/31¯ , we can
make the same rewriting as above@see Eq.~12!# and con-
sider each term separately. It follows that also here the le
ing, linear, term in the expansion ofS0(m) has as coefficient
the first Leutwyler-Smilga sum rule for that case@1,5#:

S0
CSE~m!

S
52mK (

n.0

1

zn
2L

0

1¯

5m1¯ . ~15!

This linear behavior with coefficient 1 is precisely what
observed in Fig. 1c. The same argument goes through
for sectors of nontrivial winding numbersn, in which case
the formula reads

Sn
CSE~m!

S
5

n

m
12mK (

n.0

1

zn
2L 1¯

5
n

m
1

1

112unu
m1¯ . ~16!

We finally present lattice gauge theory data for the SU~2!
gauge group and staggered fermions in the adjoint repre
tation. Here data should align on the universal scaling cu
of the COE universality class@see Eq.~8!#, and we show the
results of a few high-statistics~but rather small! lattice vol-
umes and two differentb values in Fig. 1d. Theb values
were again chosen on the basis of having already a g
estimate for the infinite-volume chiral condensateS ~for the
adjoint representation! @11#. The analytical curve is seen t
have a surprising behavior: itrises, even here in then50
case, with decreasing~rescaled! fermion massm. This un-
usual feature is a reflection of a peculiarity of the quench
microscopic spectral densityrs

(0)(z) for the COE ~see the
third of Ref. @3# and, e.g.,@19#!,

rs
~0!~z !5

z

2
J1~z!21

1

2
J0~z!F12

1

2
pz@H0~z!J1~z!

2H1~z!J0~z!#G . ~17!

Contrary to all other microscopic spectral densities for
chiral ensembles, the above function does not vanish az
50. This is an artifact of the quenched limit, and it implie
that in this quenched theory one can have spontaneous
3-5
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metry breaking even if one is taking the limitV→` andm
→0 in a correlated manner. Conventionally the possibility
spontaneous symmetry breaking implies that onefirst sends
the volumeV to infinity and only subsequently takes th
massless limitm→0:

S[ lim
m→0

lim
V→`

^c̄c&. ~18!

In the quenched case corresponding to the COE we obs
that spontaneous symmetry breaking can occur even if
take the simultaneous limitV→` andm→0, with mVfixed.
This holds only in then50 sector. FornÞ0 we face the
usual situation that the chiral condensate diverges like 1m.
This holds in the quenched theory as well when we sum o
topological charges@18#.

Also in this case we can analyze the limit ofm→0 ana-
lytically for n50. The reason for the unusual phenomenon
a constant mass-dependent chiral condensate in the limm
→0 is the termJ0(z)/2 in Eq. ~17!. It is this term that leads
to a nonvanishing microscopic spectral density atz50, and
one can easily confirm that it is also this term that is resp
sible for the leading small-m behavior of the chiral conden
sate in this case. Using

E
0

`

dz
J0~z!

z21m2 5
p

2m
@J0~m!2L0~m!# ~19!

and the small-m expansion of the modified Struve functio
L0(m)52m/p1¯ , we see that only the first piece contrib
utes in the limitm→0. From Eqs.~3! and~17! we finally get3

S0
COE~m!

S
5

p

2
1O~m! ~20!

for this universality class. An approach towards this const
value is seen in the data of Fig. 1d, but the signal obviou
gets rather noisy aroundm;1023 for these lattice volumes
We show in Fig. 2 a magnified plot of the distribution of th
smallest eigenvalue along with the curve for the fit for the4

lattice. We see that there is a reasonable sampling of
distribution for very small eigenvalues, but even larger s
tistics beyond our 135000 configurations are needed to re
adequately sample this region and hence give very relia
estimates for the condensate. Again we see that the c
condensate is an extremely sensitive probe of the sma
Dirac eigenvalue spectrum. For example, the statistical fl
tuation that causes a small surplus of eigenvalues very c
to the origin in Fig. 2 reflects itself directly in the slightl
larger chiral condensate in Fig. 1~d!. The deviation is seen
clearly on the nonlogarithmic vertical scale.

3Note that them→0 limit gives a condensate that is a factor
p/2 larger than the conventionally defined chiral condensate
finite-volume effects do not eventually cut off the lowest eigenva
in this case, one can even have spontaneous chiral symmetry b
ing without first taking the infinite-volume limit~we thank J. Ver-
baarschot for emphasizing this last point!.
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In sectors of nonvanishing topological chargen, the mi-
croscopic spectral density vanishes at the origin, and i
were not for then/m piece, the mass-dependent chiral co
densate would then also vanish asm→0, even in the infinite
volume limit. For example, forn51 the expansion for smal
m reads in this case

S1
COE~m!

S
5

1

m
2

1

2 F lnS m

2 D1g21Gm1O~m3!, ~21!

with, again, am ln(m) term in addition to the purely linea
contribution.

Other physical observables can of course be extrac
from the finite-volume partition function. We shall here fo
cus on one such observable, a chiral susceptibilityv~m!,
which we define as

vn~m!

S2V
[4m2E

0

`

dz
rs

~n!~z;m!

~z21m2!2 1
2n

m2 . ~22!

We expect this quantity to be a more sensitive probe of
rescaled eigenvaluesz at a specific rescaled massm than the
chiral condensate because of the higher power occurrin
the denominator of the integrand. This quantity is especia
easy to compute in the quenched limit, where the spec
density ism independent. One then has

vn~m!

S2V
522m

]

]m F E
0

`

dz
rs

~n!~z!

~z21m2!
1

n

2m2G
52m

]

]m FSn~m!

m G Y (

5FSn~m!

m
2Sn8~m!G Y (. ~23!

If
e
ak-

FIG. 2. The distribution of the lowest eigenvalue for stagge
fermions in the adjoint representation of SU~2! at b52.0 and 44

corresponding to the orthogonal ensemble. The scale is greatly
larged to show the leading edge of the distribution.
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FIG. 3. The quenched susceptibilityv for
staggered fermions in~a! the fundamental repre
sentation of SU~3! as a function of the fermion
mass,~b! in rescaled form as a function ofm
5mSV, ~c! the fundamental representation o
SU~2!, and ~d! the adjoint representation o
SU~2!.
al tic
e

ibil-
That combination is particularly useful in testing the sm
deviation from linear behavior ofSn(m) in, for instance, the
case corresponding to the CUE withn50. In general, for a
quenched condensate of the form

Sn~m!

S
5

n

m
1Am1Bm ln~m!1Cm21¯ , ~24!

we indeed find

vn~m!

S2V
5

2n

m22B2Cm1¯ . ~25!
a

a
in

09450
lThe linear term inSn(m) has canceled, and the asympto
behavior for m→0 gives us the constant in front of th
m ln(m) term in Sn(m).

For the CUE universality class, the quenched suscept
ity defined above becomes quite simple:

vn
CUE~m!

S2V
52Jn11~m!Kn21~m!1

2n

m2 , ~26!

which has the small-m expansion
vn
CUE~m!

S2V
5

2n

m2
15

11
1

2
F lnS m

2
D 1g2

1

4
Gm21O~m4! if n50,

2
1

4
F lnS m

2
D 1gGm21O~m4! if n51,

1

4n~n221!
m21O~m4! if n>2.

~27!
re-
the
o-
iral
Of course, similar expressions can be derived for the p
tially quenched cases.

In Fig. 3~a! we show raw data forv for the same lattice
couplings and lattice volumes as in Fig. 1. Again, these r
data beautifully collapse down on the one single scal
r-

w
g

function v0(m) when rescaled according to the above p
scription, as shown in Fig. 3b. We emphasize again that
data forv~m! are much more sensitive probes of the micr
scopic spectral density of the Dirac operator than the ch
condensate itself.
3-7
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For the CSE and COE universality classes the gen
expressions forv~m! are quite involved, but the cases wi
n50 and 1 become relatively simple. The prediction for t
CSE universality class in a sector of topological charge z
and one reads

v0
CSE~m!

S2V
5p@K0~2m!12mK1~2m!#

3@L0~2m!I 1~2m!2L1~2m!I 0~2m!#

24mK1~2m!I 2~2m!, ~28!

v1
CSE~m!

S2V
5

2

m2 14K1~2m!@ I 3~2m!1mI 2~2m!#

18K2~2m!I 2~2m!2p@3K2~2m!12mK1~2m!#

3@L0~2m!I 1~2m!2L1~2m!I 0~2m!#, ~29!

with the smallm expansion
d
er

n

ll
ke
w
pic
W
d

t
in
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vn
CSE~m!

S2V
5

2n

m2

1H 2 4
3 @ ln~m!1g2 1

4 #m21O~m4! if n50

1
15 m21O~m4! if n51.

~30!

The analogous prediction for the COE case is

v0
COE~m!

S2V
5

p

2
@K0~m!1mK1~m!#

3@L0~m!I 1~m!2L1~m!I 0~m!#

2mK1~m!I 2~m!1
p

2m
@ I 0~m!2L0~m!#

2
p

2
@ I 1~m!2L1~m!#11, ~31!

v1
COE~m!

S2V
5

2

m2 1K0~m!I 2~m!1K1~m!I 1~m!, ~32!

with the small-m expansions
vn
COE~m!

S2V
5

2n

m2 1H p

2m
2

p

8
m2

1

8 F lnS m

2 D1g2
19

12Gm21O~m3! if n50,

1

2
1

1

8 F lnS m

2 D1g2
1

2Gm21O~m4! if n51.

~33!
ule
non-
In

well
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ith

n-
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We show the rescaled data for gauge group SU~2! and stag-
gered fermions in the fundamental representation in Fig. 3~c!
and compare these rescaled data with the analytical pre
tion ~28!. The agreement is quite good, except for the v
smallest lattice volume (44 at b51.8). Finally, in Fig. 3~d!
we show analogous data for gauge group SU~2! and stag-
gered fermions in the adjoint representation, where the a
lytical prediction~of the COE universality class! is as given
in Eq. ~31!. Again the agreement is perfect.

From the Leutwyler-Smilga sum rules and from the sma
mass expansions for the chiral condensate, we can ma
general prediction for the agreement of the condensate
the RMT predictions based on how well the microsco
spectral density fits the corresponding RMT predictions.
see in the unitary case that the coefficient of the linear or
in the mass prediction for the sum rule, Eq.~13!, is depen-
dent on all the nonzero eigenvalues~appropriately weighted!
in the spectral sum forn.0. For then50 case, we find tha
the condensate will depend most strongly on the lead
edge of the lowest eigenvalue for very smallm. This depen-
dence is related to the appearance of them ln(m) term in Eq.
~10!. For the symplectic case, the coefficient in Eq.~16! is
predicted for alln>0 @no appearance of a ln(m) term at
ic-
y

a-

-
a

ith

e
er

g

leading order#. For the orthogonal case, there is no sum r
and we can expect a strong dependence on the smallest
zero eigenvalue in all topologies at small fermion mass.
general, then, if the microscopic spectral density agrees
for many oscillations with RMT, we can expect reasona
agreement for the condensates with RMT in the ensem
and topological sectors where the sum rules apply. In
other cases, when probing with a small fermion mass th
can be a strong dependence on how well the smallest ei
value is sampled.

At the same time, there is another competing effect t
can make the nonzero topology data fit reasonably well w
the RMT predictions. From the solution toh(m) in Eq. ~9!,
we see that whenm→0 the cutoff for the bottom spectrum
of D†(0)D(0) is the smallest eigenvalue which will be no
zero. Henceh goes to a constant atm50. However,^c̄c&
and v go down with an explicitm or m2 factor. The RMT
predictions are nontrivial because, in the unitary case,
example, am ln(m) term is generated. At higher topology, th
ln(m) term moves to higherO(m). Hence we can see trivia
agreement with RMT at higherO when we probe the small
est eigenvalue. However, we still have to get the ove
infinite volume scaleS correct and that is nontrivial.
3-8
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III. TOPOLOGY: OVERLAP FERMIONS

It is particularly interesting to test the analytical pred
tions for sectors with nontrivial topological charge. Whi
staggered fermions are unsuitable for this, there now e
lattice-fermion formulations which correctly reproduce tho
chiral Ward identities that are sensitive to gauge field top
ogy. Because they share the same Ward identities as
tinuum fermions, their effective Lagrangians coincide w
those of conventional chiral perturbation theory. In partic
lar, in the scaling limit~1!, these lattice fermions will give
rise to the same Leutwyler-Smilga effective Lagrangians~de-
pending on the gauge groups and color representations! and
will hence fall into exactly the same universality classes
continuum fermions.

The overlap Dirac operator@15# derived from the overlap
formalism @21# is a proper realization of a single-flavo
massless fermion on the lattice that separates lattice g
fields into different topological classes based on the num
of exact fermion zero modes. The massive overlap Di
operator is given by

D~m!5
1

2
@11m1~12m!g5e~Hw!#, ~34!

with 0<m<1 describing fermions with positive mass all th
way from zero to infinity and whereHw is the Hermitian
Wilson-Dirac operator with a negative Wilson-Dirac mass
the lattice@15,16,22#. Heree(x) indicates the sign function

The external fermion propagator is given by

D̃21~m!5~12m!21@D21~m!21#. ~35!

The subtraction atm50 is evident from the original overlap
formalism @21#, and the massless propagator anticommu
with g5 @15#. With our choice of subtraction and overa
normalization the propagator satisfies the relation

m^bu@g5D̃21~m!#2ub&

5^buD̃21~m!ub& ; b satisfying g5ub&56ub&

~36!

for all values ofm in an arbitrary gauge field backgroun
@16#. If chiral symmetry is broken, the right-hand side of E
~36! is nonzero in the massless limit, implying that the pi
mass goes to zero as the square root of the fermion m
Since @g5D(m)#2 commutes withg5 , its eigenvectors are
chiral. In the basis where@g5D(m)#2 is diagonal,g5D(m) is
block diagonal with each block being a 232 matrix @16#.
Exact zero eigenvalues of@g5D(m)#2 are paired with unit
eigenvalues of@g5D(m)#2 with the opposite chirality. These
eigenvectors of@g5D(m)#2 are also eigenvectors ofD(m)
and therefore the topological zero modes ofD(m) are chiral.
We shall denote the nonzero eigenvalues of@g5D(m)#2 by
l i

2 with 0,l i
2,1. In terms of these eigenvalues, the chi

condensate and chiral susceptibility in a fixed gauge fi
background are given by@16#
09450
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1

V
(

x
^c̄~x!c~x!&A5

1

V
Tr@D̃21#

5
unu

mV
1

1

V
(

i

2m~12l i
2!

l i
2~12m2!1m2

~37!

and

v5
1

m
^c̄c&A2

d

dm
^c̄c&A

5
1

V
@Tr~g5D̃ !22~m!1TrD̃22~m!#. ~38!

Similar to Eq.~36!, we have@23#

^buD̃21~m!ub&5
m

12m2 b†@h~m!2b#,

^bu~g5D̃ !22~m!1D̃22~m!ub&5
2m2

~12m2!2

3@h†~m!2b†#@h~m!2b#, ~39!

where

H0
2~m!h~m!5b with H0~m!5g5D~m!, g5b56b.

~40!

We note that

H0
2~m!5D†~m!D~m!

5d~m!D†~m!

5~12m2!FH0
2~0!1

m2

12m2G , ~41!

with

H0
2~0!x65F1

2
1

1

4
~g561!e~Hw!Gx6

with g5x656x6 . ~42!

Equation~41! implies that we can solve the set of equatio
H0

2(m)h(m)5b for several massesm simultaneously~for
the same right-handb! using the multiple Krylov space
solver described in Ref.@20#. In our tests we used fermion
masses from 0 to 0.999. However, for comparisons to R
we only consider the fermion mass range fromm51024 up
to 0.999.

The first term on the right-hand side of Eq.~37! is due to
the presence ofunu exact zero modes in a fixed gauge fie
background. By working in the chiral sector whe
@g5D(m)#2 has no zero modes, it is possible to compute
second term in Eq.~37! and investigate the onset of chira
symmetry breaking on the lattice@16#. Note that the relation
~37! is an exact identity at any lattice spacing. It is of th
3-9
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FIG. 4. The microscopic spectral density fo
overlap fermions in~a! the fundamental represen
tation of SU~3! ~unitary!, ~b! the fundamental
representation of SU~2! ~orthogonal!, and~c! the
adjoint representation of SU~2! ~symplectic!. De-
viations from the analytical predictions~smooth
curves! beyond a few oscillations are due to th
rather small physical volumes considered.
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same form as Eq.~3!, up to terms vanishing with the ultra
violet cutoff. The bare fermion mass enters the overlap Di
operator in a nontrivial way and is proportional to the ma
parameterm in Eq. ~34! only for small m, i.e., only up to
terms of relativeO(a2). The proportionality factorZm de-
pends in particular on the mass in the Wilson-Dirac opera
used @16#. Since Zm is the inverse of the wave functio
renormalization constant@16#, the rescaled mass paramet
m5mSV is independent of theseZ factors and agrees with
the continuum definition up to terms vanishing with the
traviolet cutoff.

The infinite-volume chiral condensateS differs signifi-
cantly, at the sameb values, from that of staggered fermion
However, in the cases we shall present here this one si
parameterS has already been extracted to high precis
from the distribution of the smallest Dirac operator eige
value @13#. The analytical predictions forSn(m) are thus
parameter free also in these cases.

On all the gauge configurations used for the measurem
of the condensate, a few low-lying eigenvalues have pre
ously been determined@13#. We thus know the number an
chirality of all zero modes, and hence the topological char
As mentioned already, when zero modes are present, we
form the stochastic estimate in the sector with oppo
chirality. In topologically trivial gauge fields, we perform th
stochastic estimate in the positive chirality sector.

We are now ready to test some of the predictions
overlap fermions in the finite-volume regime. The first o
servation is that the universality classes of continuum fer
ons coincide with those of overlap fermions. We begin
comparing the microscopic spectral densityrs(z) with the
09450
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predictions of RMT. In Fig. 4 are the results for differe
topological sectors for all the ensembles. The curves are
predictions using the infinite volumeS previously deter-
mined @13#. We see good agreement for the first oscillati
~essentially the lowest eigenvalue contribution! for all topo-
logical sectors and the best agreement in the symplectic
in Fig. 4~c!. However, the data rapidly deviate up from th
curve for higher eigenvalues. This is a finite-volume effe
since as the volume increases the scale of the eigenva

FIG. 5. The distribution of the lowest eigenvalue for overl
fermions in the orthogonal ensemble. The scale is enlarged to s
the leading edge of the distribution.
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FIG. 6. The rescaled condensate for overl
fermions in~a! the fundamental representation o
SU~3! as a function ofm5mSV, ~b! the funda-
mental representation of SU~2!, and ~c! the ad-
joint representation of SU~2!.
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decreases into the region where RMT applies. The infin
volume chiral condensateS sets the scale for the eigenva
ues, and since the condensate is larger for staggered ferm
compared to overlap fermions at corresponding parame
the eigenvalues for staggered fermions occur closer to
where there is a corresponding better agreement for m
oscillations with the RMT predictions.4

Nevertheless, we can expect to find the best agreeme
vn with the RMT predictions where the fermion mass
probing the scale of eigenvalues inrs(z) that are in best
agreement. For the chiral condensate^c̄c&n the agreemen
with RMT will depend on the overallrs(z), which we re-
marked is best for the symplectic case. Since the spe
density does not match the RMT prediction for many os
lations in the unitary case as seen in Fig. 4~a!, we expect
higher topologies to not be well described by RMT.

In addition, we can expect problems for comparisons
observables for small fermions masses when thers(z) has
not been adequately sampled, and this problem is most
nounced in the orthogonal case. Compared to the stagg
fermion example in Fig. 2, we do not have enough statis
and large enough volumes to adequately sample the lea

4The energy scale up to which RMT is expected to be valid, ca
the Thouless energy, is given byETh' f p

2 /(SL2) @24#. Using the
Gell-Mann–Oakes–Renner relationf p

2 mp
2 5mqS, this becomes

ETh'mq /(mp
2 L2). We expect this Thouless energy to be about

same for staggered and overlap fermions. Since the average sp
between eigenvalues is about 1/(SV), RMT is expected to govern
more eigenvalues for staggered than overlap fermions.
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edge of the eigenvalue distributions shown in detail in Fig
We continue with tests of the predictions forSn(m) in the

CUE case, using quenched overlap fermions and ga
group SU~3!. Shown in Fig. 6~a! are some data for gaug
field sectors withn50, . . . ,3. Westress that for the sector
of nonvanishingn we have subtracted the somewhat triv
n/m term, which otherwise would completely dominate t
plot. What is shown is thus not the chiral condensateper se,
but ratherSn(m)/S2unu/m. The agreement in then50 sec-
tor is good, but while the data for then51, 2, and 3 quali-
tatively display the right behavior, they are neverthele
somewhat off the analytical predictions.

In Fig. 7~a! we show the subtractedvn /S2V for the uni-
tary case. As mentioned before, this observable is a m
sensitive probe of the eigenvalue distribution at a fixed f
mion mass and should yield better agreement when the
respondingrs(z) is in good agreement with the RMT pre
dictions. We see good agreement forz5mSV.0.05 in all
topology sectors, but below this value there are deviati
related to the lack of small eigenvalues inrs and the small
volume. For the orthogonal ensemble we find even wo
agreement forSn(m)/S2unu/m shown in Fig. 6~b!, but find
a small mass region (0.4&z&4) in vn /S2V shown in Fig.
7~b! where we simultaneously have an adequately samp
distribution of very small eigenvalues and good agreemen
rs(z) with RMT.

We next turn to gauge group SU~2! and overlap fermions
in the adjoint representation where we find the expec
good agreement with analytical predictions for then50 and
1 sectors~we found almost no configurations in the secto
of higher topological charge in this case!. These graphs are
shown in Figs. 6~c! and 7~c!.
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FIG. 7. The rescaled quenched susceptibil
v for overlap fermions in~a! the fundamental
representation of SU~3! as a function of m
5mSV, ~b! the fundamental representation o
SU~2!, and ~c! in the adjoint representation o
SU~2!.
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IV. CONCLUSIONS

We have performed a systematic series of Monte Ca
tests of the analytical predictions for the chiral condens
and related chiral susceptibilities in the finite-volume scal
region of Eq.~1!. In four dimensions there are three unive
sality classes with which to compare, conveniently classifi
in random matrix theory terminology by means of chiral ve
sions of the three classical matrix ensembles, i.e., CSE, C
and COE. Once the infinite-volume chiral condensateS is
known, there are parameter-free finite-volume scaling fu
tions with which to compare data. As we have shown, res
for all three universality classes with topological chargen
50 are nicely reproduced by staggered fermions. To test
analytical predictions for gauge field sectors of nontriv
topological winding numbers, we have also considered ov
lap fermions, which possess exact zero modes in topol
cally nontrivial gauge fields. Here there is qualitatively go
agreement, with even excellent agreement in the case o
CSE universality class. The deviations from the RMT p
dictions observed in the other cases are understood to be
to either finite-volume effects or the relatively modest sta
tics we were able to obtain in the simulations with overl
fermions.
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The results presented here clearly show the power of
finite-size analysis that has come out of the study of fin
volume effective partition functions and random matr
theory. In contrast to conventional finite-size scaling analy
near critical points, we are here in the unusual situation
knowing not only the right scaling variables, but als
parameter-free exact analytical predictions for the sca
quantities. In this particular corner of those non-Abelian
Abelian gauge theories that support spontaneous breakin
chiral symmetry the exact analytical predictions have th
very clearly been confirmed by direct numerical studies.
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