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Universal scaling of the chiral condensate in finite-volume gauge theories
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We confront exact analytical predictions for the finite-volume scaling of the chiral condensate with data
from quenched lattice gauge theory simulations. Using staggered fermions in both the fundamental and adjoint
representations, and gauge groupg3land SU3), we are able to test simultaneously all of the three chiral
universality classes. With overlap fermions we also test the predictions for gauge field sectors of nonzero
topological charge. Excellent agreement is found in most cases, and the deviations are understood in the others.
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[. INTRODUCTION beautiful classification of the possible chiral symmetry
breaking patterns for different gauge groups and color repre-
The constraints imposed by chiral symmetry breaking insentations of the fermions in terms of the classical random
gauge theories can be surprisingly strong. Low-energy theamatrix theory ensembles labeled by the so-called Dyson in-
rems, the dynamics of pseudo Goldstone bosons in an expaglex. This leads to three major universality clasggls For
sion around the zero-momentum limit, and the whole framethe quenched case, the analytical prediction for the mass-
work of effective chiral Lagrangians are examples of this.dependent chiral condensate was in fact first obtained by
Generally these constraints are imposed on the effective |0V\K7’erbaarscho|§6] using the exact formula for the microscopic
energy degrees of freedom only. It is much more surprisingirac operator spectrum as derived from random matrix
that both spontaneous chiral symmetry breaking and the extheory. It has later become clear that these results can also be
plicit breaking of chiral symmetry due to the(l) anomaly  derived from finite-volume partition functions alofié]. A
also can be used to give exact analytical predictions for th@owerfm analytical technique uses fully or partially
underlying fermion degrees of freedom. This is possible quenched(supersymmetric chiral Lagrangiang8]. Lattice
when one restricts the gauge theory to a large but finite fourgauge simulations have already shown nice agreement with
volumeV obeying the inequality1] the exact analytical predictions for the microscopic Dirac
operator spectrum associated with all three different univer-

1 sality classe§9—-11] using staggered fermions. It has been
V< —, (1 particularly challenging to see also the detailed analytical
My predictions in gauge field sectors of fixed nonzero topologi-

cal chargey, and this has very recently been achieved using

wherem_; is the pseudo Goldstone boson mass. In this ratheperfect actiong12] and overlap fermiong13].
extreme limit the QCD partition function depends on the The purpose of this paper is to perform a systematic series
fermion massesn; only in the particular combination; of lattice gauge theory tests of the exact predictions related to
=VXm;, whereX is the chiral condensate. While the four- the mass-dependent chiral condensates and one of the chiral
volume V must be taken to infinity in order to obtain ana- susceptibilities. For the case of gauge groug3and stag-
lytical predictions, a finite-size scaling regime is thusgered fermions in the fundamental representation, such an
achieved by sending fermion massesto zero at just such a analysis was first performd®] on the basis of lattice gauge
rate that theu;’s remain fixed. This is an exact finite-size theory data from the Columbia groip4]. These data, based
scaling region in the same sense as near critical points: wen configuration witiN;=2 dynamical fermions, were taken
can reach as accurate agreement as we wish by simpfgr finite temperature lattice volumes. The dynamical fermi-
choosing a sufficiently large four-volumé. In contrast to  ons were rather heavy and not obeying the inequélityFor
what one is accustomed to in statistical mechanics, the finitethis reason the valence fermions were taken to be much
size scaling functions are in this case knogwactly both in  lighter, and on their mass scale the configurations were in
shape and absolute normalization, once one has the value fafct to be considered quenched. As there are very accurate
the infinite-volume chiral condensake estimates for the infinite-volume chiral condensatéor the

One of the remarkable aspects of the finite-size scalingame theory at differen{3 values [10], we now have
region (1) is its relation to random matrix theor§RMT) parameter-free predictions at thegevalues. Furthermore,
results that have proven to be univer§at-4]. There is a we can probe much larger physical volumiesd hence ob-
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tain higher accuragy and our result will not be contami- gous. This is one way in which the analytical prediction for
nated by finite-temperature effects. This case corresponds the quenched limit can be obtainéithe other proceeds di-

the chiral unitary (CUE) random matrix theory ensemble. rectly from the quenched chiral Lagrangig8). In numeri-

We next turn to gauge group $2) and staggered fermions cal simulations the condensate measurements are of course
in the fundamental and adjoint representations. The formeperformed very easilyfrom the trace of the propagajor
case corresponds at our finite lattice spacings to the chirglithout ever having to compute the Dirac operator spectrum
symplecticensemble(CSB in the random matrix theory jiself. Nevertheless, we have sometimes found it convenient
classification, while the latter corresponds to the chimal ¢, supplement direct measurements by appropriate sums over
eigenvalues. In this connection it is important to stress the
?ollowing point. Because of Eq3), we are in fact concerned

fer from two significant defects in this context. First, at our . . - -
o ; . : "~ with tests of the analytical predictions fpg(Z, ). The ad-
finite lattice spacings the staggered fermions with(BU vantage of using. ,(u) to test these predictions is that it in

gauge group do not fall into the right universality classes as . . )
compared with fermions in the continuui8]. Second, arti- a quantitative manner probes the microscopic spectral den-

facts due to finite lattice spacings prevent us from testinqi'ty in different regimes. For instance, by going to very small
more than the gauge field sector of topological charge alugs of.,u the condgns_ate_ becomes very sensn_lve to the
=0 with these fermions. Both of these shortcomings can b@r€cise eigenvalue distribution arougd- 4. In particular,
overcome by the use of more sophisticated fermion formulafor the CUE(in the »=0 sectoy and the COHin the »=0
tions. We shall here provide lattice data obtained with overand v=1 sectory X ,(u), as we shall see below, is ex-
lap fermions[15]. Here finite-lattice-spacing analogues of tremely sensitive to the low-distribution of the smallest
continuum relations for the chiral condensate in nontrivialnonzero eigenvalues. This effect can be enhanced by consid-
topological backgrounds can be establisfiéd]. We thus  ering in addition an observable such as a chiral susceptibil-
simultaneously achieve both the correct identification withity, as we shall discuss below.
respect to continuum universality classes and correct rela- Considering the expressidB) for the chiral condensate,
tionships in nontrivial topological gauge field sectors. Weone might wonder about the necessity of subtractions. After
shall throughout restrict ourselves to the quenched IMjit  all, even in free field theory the spectral density of the Dirac
=0. Analytically this limit is readily taken, both from ran- operator goes like(\)~\2, and the spectral representation
dom matrix-theory and from théquenched finite-volume  of the condensate is thus ultraviolet divergent. There are no
partition functions, and the answers have been shown teuch divergences in the finite-volume scaling regime consid-
agree. There are thus precise and unequivocal analytical prered here, and we should make no subtractions in the chiral
dictions also for this case. condensate either. Although this point was already explained
For which observables do we have exact analytical prein the paper of Leutwyler and Smilda], it is worthwhile to
dictions? Essentially all quantities for which the partition repeat it here. The explanation is as follows: What we are
function itself Z({u;}), perhaps extended with additional computing here is not the conventionally defined chiral con-
fermion species, is a generating function. The simplest quardensate. We are taking a correlated limit\6f- and m
tity to focus on is obviously the mass-dependent chiral con-—0 such thatu=m2V is kept fixed. In this limit the con-
densate itself, which in the quenched theory simply reads densate® (u) receives contributions only from Dirac opera-
tor eigenvalues on the scale of<Aqcp and below. The
E(M)=iln[2( ) @) ultraviolet end of the Dirac operator spectrum is not ig-
S du ] nored: the correctiongand hence subtractiongrom this
region are of the kindnA? and m3In A, where A is the
HereZ, is the genuine chiral condensate in the massless limitiltraviolet cutoff. In the scaling region whegg=m3V is
of the infinite-volume theory, ange=VXm is the micro- kept fixed, these terms are suppressed by drd 1V3, re-
scopically rescaled quenched “valence” fermion mass spectively. In other words, the ultraviolet end of the Dirac

Because of the relatioat fixed topological charge) operator spectrum in this region enters only ag tbrrec-
tions to the main predictions. In addition, there are of course
>, (w) = pdNO) |l also 1V corrections from the neglect of nonstatic modes in

S :ZML 2+ 2 + 7 (3 the effective partition function, so all of theseVltorrec-

tions are effectively beyond our control. Consistent with this
abservation is the fact that\l/corrections are nonuniversal
In"the random matrix theory conteikit8]. Here we are inter-
ested only in the leading, universal, predictions Yo+ «.

the mass-dependent chiral condensate tests a massive sp
tral sum rule for the microscopic densin@(g“;,u) of the

Dirac operator spectruff,17]." We shall .here re;trlct our= Corresponding to the three different universality classes,
selves to the quenched cases, Whe(() is mass indepen- hore are three distinct predictions for the mass-dependent
dent(and the partially quenched cases are completely analqsyndensate. We shall here give the predictions for gauge
field sectors of fixed topological indexand for any number
of massless flavorll; . First, for gauge groups SBI¢) with
YIn what follows we shall for convenience, to avoid absolute-N.=3 and fermions in the fundamental representation the
value signs, always considernon-negative. prediction read$6]
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S () ons. In this case the explicit form of the microscopic spectral
T:M[|Nf+y(M)KNf+V(M) density p{")(¢; ;) of alsoN; massivefermions (of masses
i) is known, so that one has also available complete ana-
v lytical predictions for partially quenched chiral condensates
FIngr () K1 (p) ]+ 2’ (4)  with massive fermions. These can also be derived directly
from partially quenched chiral Lagrangiafsee Ref[8]).
wherel,(x) andK,(x) are the two modified Bessel func- For the CSE universality class, where the microscopic
tions. This is the universality class of the CUE in the randomspectral density foN; massless fermions in a sector of arbi-
matrix theory classification. Staggered fermions in the samérary topological charger has been given in very compact
representation and for the same gauge groups are here Hefrm in [9], we have been able to reduce the chiral conden-
longing to the same universality class as continuum fermisate to the following. Whei; is evenwe find

2w v v+ N/2
s 7 2plInr 220K 2020) F I 2ns 1 (2 K201 (200) 1 w 2(=1)"" KN, +2,(21)
v+N¢/2—1

m K
|o(2,u)—E[Lo(zlm1(2M)—|-1(2M)|0(2M)])— > (—DMp1(2u)

X . 5

M

whereL ,(x) denotes thenth-order modified Struve function. F&¥; odd we find
SO )
=5 =20l 220K 420 20) F 200 2(200) K2, 2(210) ]

v+ (N¢—1)/2
1-1o2w)=2 2 (=D)¥Iu(2p)

. (6)

14
o (NI (2

These predictions pertain to gauge group SLJ(with N.=2 and fermions in the adjoint representatidar continuum
fermions. This is also the universality class relevant for staggered fermions in the fundamental representation and gauge group
SU(2). Finally, the universality class of the COE predicts a chiral condensate of the following forne.detwtwe find, using

the recent compact expression for the microscopic spectral density of thdtl€hse

370w v
T:M[|2Nf+y(M)K2Nf+v(M)+|2Nf+v+1(M)K2Nf+V—1(M)]+;
N+ (v—1)/2
(=DM oy (WK 2 2 (= D)Moy (W) Ka ) | (7)
while for » evenwe have been able to reduce the answer to
S5 w) v Np+ w12,
s = mllan+ () Ko+ (1) F1an 41 () Ko+ -2 (@) ]+ “ H(=DT S o) —Long+ ()]
N¢+v/2—1
(2N¢+ v—2k—3)!!
1k 2k+1_ (1 \Niso2
2 U GNT e D 4 T D Ky ()
N¢+v/2—1
m K
Xl lo(pm)— E[Lo(ﬂ)H(M)_Ll(M)'o(,U«)] -2 KE::O (=D ok 2(p) |, (8)
|
where, with the usual convention-(1)!! =1. Equationg7) Il. STAGGERED FERMIONS
and(8) give the chiral condensate in ) gauge theory and
continuum fermions in the fundamentgseudorealrepre- Analytical predictions for the quenched chiral condensate

sentation. They also correspond to gauge grouphN§J@ith  and higher chiral susceptibilities are all restricted to sectors
N.=2 and staggered fermions in the adjoint representation.
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of fixed gauge field topolog§.As mentioned above, with lowest 50 eigenvalues of the staggered Dirac operator, typi-
staggered fermions lattice simulations of the chiral condeneally in 32-bit single precision. These eigenvalues were used
sate at realistic values of the coupling do not see any trace @b compute a truncated spectral sum approximation for the
gauge field sectors except the one of topological charge condensates at small fermion masses. The truncated spectral
=0 [6]. The comparisons one can make are therefore slightlgum method greatly improved the statistics. However, for the
limited. On the other hand, computationally the staggeredmall lattices (4 and 6") typically on the order of 100000
fermion formulation is extremely convenient for our pur- configurations were needed. As will be discussed below, this
poses. We shall therefore start with a systematic study of th%asonably large amount of statistics was necessary to ad-
chiral condensate based on staggered fermions. equately sample the lowest eigenvalue distribution of the

Fgr the determmgnon ththe. staggered quehnc;tfad chirghirac operator probed by the small fermion masses used for
condensate, we used a stochastic estimate method for Sevegay tasts of the predictions of chiral random matrix theory. In

B i_n .SU(Z) and SL(S_) with fermior_ls in the fu_ndame_ntal and_ addition, for the orthogonal ensemble cases, double precision
adjoint representations. We are interested in solving the “n\'/vas used for the eigenvalues.

ear zsystem_of equation@*(m)D(_m) 7(m)=(D'(0)D(0) Consider first the gauge group 8) and staggered fer-
+m?) 7(m)=b for some stochastic sourdeand the stag- igns in the fundamental representation. The universality
gered Dirac operatdD. We can relate the solution(m) in (|55 s thus that of the CUE, the same as in the continuum.
a fixed background gauge field to the final quantities we argy, Fig. 1) we show the quenched chiral condensate as a

interested in with the following expressions: function of the valence masa for a few differentg values
_1 R and various different lattice sizes. At the shown values of the
(b[D™*(m)[b)=mb'y(m), lattice coupling 8 the infinite-volume chiral condensal®
) has already been determined to high accuracy from indepen-
(b|[DT(m)D(M)]~*+D~?(m)|b)=2m?5"(m) n(m). dent studies[10]. This means that the finite-size scaling

o . function ,(u) of Eq. (4) is parameter free. The first obser-
A multishift conjugate method20] was used to solve the yation is that all the different data roughly collapse down on
required linear system for several fermion masses. Wene yniversal scaling curve, once plotted agajastmsV
supplemented these measurements with computations of thg i Fig. 1b). And the analytical predictiori4) for this
curve is remarkably well reproduced by our lattice data. This
of course just confirms on these lattice volumes and tiese
with dynamical fermions one can analytically perform the re- values the observation first made by Verbaars¢épon the
quired sum over topology1], but this is not possible in the basis of data from the Columbia group. It is particularly in-
quenched case without additional assumptions about the distribiieresting to look at the small-mass behavior. If we expand
tion of winding number$18]. the condensate in Eg4) for small u, we get(for »=0)
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6 (w) compare to the analytical prediction. In Fig. 1c we show how

- wtO(ud), (10 all data nicely collapse down on the universal scaling func-
tion (5) for N;=0. The agreement is seen to be extraordinar-

wherey is Euler’s constant. There is the expected term lineaf’y 900d over more than three orders of magnitude.

in u, but in addition a logarithmic correction of the form The MICroscopic spectral density of that cgSpreads as

In(w). This latter term, which should not be confused with follows for N¢=0:

so-called “quenched chiral logarithm,” arises from the in- e

frared part of the integral in E¢3) and is thus very sensitive péo)(g’): £31(28)%— 7["'0(25)30(25)31(2()

to the falloff of ps({) near{~0. Indeed, for the CUE the

guenched microscopic spectral density res —H,(20)34(20)?], (14)

7

2

1
+y—=

In 5

g . _ . .
O S 2 2 where H,(x) is the nth-order Struve function. Since the
ps (0= 5 30(0)"+ (O, (D small< expansion is of the form{?(¢)=¢%/3+---, we can

. L0 make the same rewriting as abojsee Eq.(12)] and con-
Wh'gh for small values of¢ behaves likeps()=¢/2  gider each term separately. It follows that also here the lead-
—{/8+:--. The leading linear term here is responsible foring |inear, term in the expansion 8f,(x) has as coefficient

themselves more easily to an analysis of the low-mass be-

havior of the condensate, since the integrals SS58w) 1
2B o3 )
, (v) n>0 é,n
ngps () 0
0 % =put---. (15
in those cases are convergent. We can thus make the followhis linear behavior with coefficient 1 is precisely what is
ing rewriting: observed in Fig. 1c. The same argument goes through also
for sectors of nontrivial winding numbensg in which case
%, (1) = pdo) v the formula reads
=2p | dlg—s+—
2 0 tp M cs
SO/ v 1
S LS s otz
=2ﬂf dlps"(O| 2~ 27z = |t
0 &+ u)] ) 1
(12) AR (16)

and consider each term separately. It follows that the leading,
linear, term in the expansion &, () for v=1 has as co-
efficient the first Leutwyler-Smilga sum rulas extended to
this quenched cag€¢l,5]:

We finally present lattice gauge theory data for thg 3U
gauge group and staggered fermions in the adjoint represen-
tation. Here data should align on the universal scaling curve
of the COE universality clagsee Eq(8)], and we show the
CUE results of a few high-statistiddut rather smalllattice vol-
2,7 1+2M D 1 L. umes and two differenp values in Fig. 1d. The3 values
3 M were again chosen on the basis of having already a good
estimate for the infinite-volume chiral condensatéfor the
B 1+ i L. (19 adjoint representatiorf11]. The analytical curve is seen to
iy 20 M : have a surprising behavior: iitses even here in thee=0
case, with decreasin@escaled fermion massu. This un-
We next turn to gauge group $2) and staggered fermi- usual feature is a reflection of a peculiarity of the quenched
ons in the fundamental representation. The analytical predignicroscopic spectral densitygo)(g) for the COE (see the
tion is here that of the CSE universality class, with a chiralthird of Ref.[3] and, e.g.[19]),
condensate as in Eg&) and(6). We again choosg values
for which the infinite-volume chiral condensateis known 0) 4 ) 1 1
to high accuracy, so that the analytical predictitBsand(6) ps () =531(0)"+ 530(D)| 1= 5 m¢[Ho(£)Ia(d)
also are parameter free. One remark is in order here: in the
CSE universality class every eigenvalue is doubly degener-
ate. The analytical predictions from RMT consider only one —H1({)Jo({)]
of the eigenvalues from each degenerate pair. A stochastic
estimate of the condensate, on the other hand, contains ti@ontrary to all other microscopic spectral densities for the
contribution from both eigenvalues of each pair and is thus a&hiral ensembles, the above function does not vanishi at
factor two larger. We have therefore divided the stochastic=0. This is an artifact of the quenched limit, and it implies
estimate of the condensate by this factor of 2 in order tdhat in this quenched theory one can have spontaneous sym-

. (17
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metry breaking even if one is taking the limift—c andm R L B L L I
—0 in a correlated manner. Conventionally the possibility of *—H ’_u—‘ 1
spontaneous symmetry breaking implies that tret sends C I S ﬂ ]
the volumeV to infinity and only subsequently takes the i —J L] L
massless limim—0: i i
0.4 —
S=lim lim (). (18 0 ]

m—0 V—x 3

a! . ,

In the quenched case corresponding to the COE we observe r 1

that spontaneous symmetry breaking can occur even if we 0.2 — —

take the simultaneous limit— o~ andm— 0, with mV fixed. r T

This holds only in thev=0 sector. Forv+0 we face the i ]

usual situation that the chiral condensate diverges like 1/ r T

This holds in the quenched theory as well when we sum over r | | | | 1

topological chargefgl8]. 0.0 /"
Also in this case we can analyze the limit @f~0 ana- 000 001 o.oz}\zvo.os 004 005

lytically for v=0. The reason for the unusual phenomenon of

a constant mass-dependent chiral condensate in thedimit ~ FIG. 2. The distribution of the lowest eigenvalue for staggered

—0 is the termJo(£)/2 in Eq.(17). It is this term that leads fermions in the adjoint representation of @Jat 3=2.0 and 4

to a nonvanishing microscopic spectral density at0, and corresponding to the orthogonal ensemble. The scale is greatly en-

one can easily confirm that it is also this term that is responlarged to show the leading edge of the distribution.

sible for the leading smalle behavior of the chiral conden-

sate in this case. Using In sectors of nonvanishing topological chargethe mi-
croscopic spectral density vanishes at the origin, and if it
© Jo(Q) ™ were not for thev/u piece, the mass-dependent chiral con-

fo §2+—M2: ﬂ[JO(“)_LO(“)] (19 gensate would then also vanishas- 0, even in the infinite

volume limit. For example, for=1 the expansion for small

and the smallx expansion of the modified Struve function # reads in this case
Lo(p)=2ulm+---, we see that only the first piece contrib-

tes in the limitu— 0. From Eqs(3) and(1 finally gef 570 11
utes in the limitu rom Eqgs(3) and(17) we finally ge 1 E(,U-):___ n M fyetlar o), @
co 3 Mmoo 2 2
2 2 " with, again, aw In(u) term in addition to the purely linear

contribution.
for this universality class. An approach towards this constant Other physical observables can of course be extracted
value is seen in the data of Fig. 1d, but the signal obviouslfrom the finite-volume partition function. We shall here fo-
gets rather noisy around~ 102 for these lattice volumes. cus on one such observable, a chiral susceptibility),
We show in Fig 2 a magnified plot of the distribution of the which we define as
smallest eigenvalue along with the curve for the fit for the 4
lattice. We see that there is a reasonable sampling of the o V(g
e : w,(u) -, ps (L)
distribution for very small eigenvalues, but even larger sta- ETV=4/’L f dgﬁJr —. (22
tistics beyond our 135000 configurations are needed to really o T(HuDT u
adequately sample this region and hence give very reliable . ) N
estimates for the condensate. Again we see that the chir}y/€ expect this quantity to be a more sensitive probe of the
condensate is an extremely sensitive probe of the smalle&gScaled eigenvalugsat a specific rescaled magsthan the
Dirac eigenvalue spectrum. For example, the statistical flucchiral condensate because of the higher power occurring in
tuation that causes a small surplus of eigenvalues very clodge denominator of the integrand. This quantity is especially
to the origin in Fig. 2 reflects itself directly in the slightly €asy to compute in the quenched limit, where the spectral
larger chiral condensate in Fig(d). The deviation is seen density isu independent. One then has
clearly on the nonlogarithmic vertical scale. .
J d¢ ps ({) LY
0

(F+ud) " 24°

ol 9
32V Mr?,u,

3Note that thew— 0 limit gives a condensate that is a factor of

7/2 larger than the conventionally defined chiral condensate. If :_Mi[zv(“)} / s

finite-volume effects do not eventually cut off the lowest eigenvalue au )7

in this case, one can even have spontaneous chiral symmetry break-

ing without first taking the infinite-volume limifwe thank J. Ver- _ Fv(ﬂ)_z/( )} / s (23)
baarschot for emphasizing this last pgint e '
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FIG. 3. The quenched susceptibility for
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That combination is particularly useful in testing the smallThe linear term in% («) has canceled, and the asymptotic
deviation from linear behavior af ,(u) in, for instance, the behavior for u—0 gives us the constant in front of the
case corresponding to the CUE wiit=0. In general, fora wuIn(w) terminX (u).

guenched condensate of the form

S,(pn) v

For the CUE universality class, the quenched susceptibil-
ity defined above becomes quite simple:

S —;+AM+BM|H(M)+C/L2+"', (29
w5 () 2v
we indeed find 2y~ 2K, a(p) + 2 (26)
w,(n) 2v
Y, _P_B_C’mLW' @5 vhich has the smalls expansion
|
p
1 M 1
1+ —|In| =] +y—=|u2+0O(p* if v=0,
5 (2 e (u
CUE
w, (u) 2v 1 M .
=—+{ —=|In| = |+ y|u®+O(u* if v=1, 2
SR 4 Y| u+O(r”) v (27)
————u2+0(u? if v=2.
| wep T

Of course, similar expressions can be derived for the parfunction wy(x) when rescaled according to the above pre-

tially quenched cases.

scription, as shown in Fig. 3b. We emphasize again that the

In Fig. 3(@ we show raw data fow for the same lattice data forw(x) are much more sensitive probes of the micro-
couplings and lattice volumes as in Fig. 1. Again, these ravscopic spectral density of the Dirac operator than the chiral
data beautifully collapse down on the one single scalingcondensate itself.
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For the CSE and COE universality classes the generaIwCSE(M) 2,
expressions fow(w) are quite involved, but the cases with —~ =—
v=0 and 1 become relatively simple. The prediction for the Y 2
CSE universality class in a sector of topological charge zero

2

and one reads . =5 [In(w)+y=31u’+0(n*) if v=0
s w2+ 0(p?) if v=1.
o) 0
Sy 7 Ko(2p) +2K1(21)] The analogous prediction for the COE case is
CcO
X[Lo(2u)11(2u) = Ly(21) 1 o(22)] o E\</M> T o)+ )]
—4uKy(2p)12(2up), (28)
X[Lo(m)la(pm)—La(p)lo(p)]
o
w2 = pKy(m)lp(p) + 5= [lo(p) —Lo(p)]
Tny = e K 15(200) + lo20)] PR g e
+8Ko(2u) 1 5(2m) — [ 3K (2u) + 2K 1 (2) ] - g[ll(m—Ll(m]H, (3D
X[Lo(2u)l1(2m) = La(2p)10(2) ], (29 SO (1)
SV 22 T Ko(p)lo(p) +Ke(p)la(p), (32
with the smallu expansion with the smallu expansions
|
T T 1 m 19 , 3w ol
SV W2 1 1] (w 1 (33
>*ts In(E +y—§,u2+(9(,u4) if v=1.

We show the rescaled data for gauge grougZldnd stag- leading orde}. For the orthogonal case, there is no sum rule
gered fermions in the fundamental representation in Fig. 3 and we can expect a strong dependence on the smallest non-
and compare these rescaled data with the analytical predizero eigenvalue in all topologies at small fermion mass. In
tion (28). The agreement is quite good, except for the verygeneral, then, if the microscopic spectral density agrees well
smallest lattice volume (4at 8=1.8). Finally, in Fig. 3d)  for many oscillations with RMT, we can expect reasonable
we show analogous data for gauge group(Bland stag- agreement for the condensates with RMT in the ensembles
gered fermions in the adjoint representation, where the anand topological sectors where the sum rules apply. In the
lytical prediction(of the COE universality clagss as given other cases, when probing with a small fermion mass there
in Eq. (31). Again the agreement is perfect. can be a strong dependence on how well the smallest eigen-
From the Leutwyler-Smilga sum rules and from the small-value is sampled.
mass expansions for the chiral condensate, we can make a At the same time, there is another competing effect that
general prediction for the agreement of the condensate witGan make the nonzero topology data fit reasonably well with
the RMT predictions based on how well the microscopicthe RMT predictions. From the solution tg(m) in Eq. (9),
spectral density fits the corresponding RMT predictions. WeVe see that whem—0 the cutoff for the bottom spectrum
see in the unitary case that the coefficient of the linear orde?f D'(0)D(0) is the smallest eigenvalue which will be non-
in the mass prediction for the sum rule, E@3), is depen- zero. Hencen goes to a constant am=0. However ()
dent on all the nonzero eigenvalu@ppropriately weighted and o go down with an explicitm or m? factor. The RMT
in the spectral sum for>0. For thev=0 case, we find that predictions are nontrivial because, in the unitary case, for
the condensate will depend most strongly on the leadingxample, au In(w) term is generated. At higher topology, the
edge of the lowest eigenvalue for very smallThis depen- In(x) term moves to highe®(u). Hence we can see trivial
dence is related to the appearance ofgha(u) term in Eq.  agreement with RMT at high&d when we probe the small-
(10). For the symplectic case, the coefficient in Eff) is  est eigenvalue. However, we still have to get the overall
predicted for allv=0 [no appearance of a In] term at infinite volume scale correct and that is nontrivial.
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Ill. TOPOLOGY: OVERLAP FERMIONS

1 — 1
- - -1
It is particularly interesting to test the analytical predic- Ex: (P P(X)) A VTV[D ]
tions for sectors with nontrivial topological charge. While

staggered fermions are unsuitable for this, there now exist v 1 2m(1—\?)
lattice-fermion formulations which correctly reproduce those =——t-2 S 5 5
chiral Ward identities that are sensitive to gauge field topol- mv VT AT(l-m+m

ogy. Because they share the same Ward identities as con- (37)

tinuum fermions, their effective Lagrangians coincide with

those of conventional chiral perturbation theory. In particu-and

lar, in the scaling limit(1), these lattice fermions will give 1 d

rise to the same Leutwyler-Smilga effective Lagranglé_ms 0= —(PP)a— —(PP)a

pending on the gauge groups and color representatam m dm

will hence fall into exactly the same universality classes as 1

continuum fermions. =—[Tr(ysD) 2(m)+TrD 2(m)]. (38)
The overlap Dirac operat¢d 5] derived from the overlap v

formalism [21] is a proper realization of a single-flavor

massless fermion on the lattice that separates lattice gz‘;luggémIIar to Eq.(36), we have[23]

fields into different topological classes based on the number 5 m
of exact fermion zero modes. The massive overlap Dirac (b|D~Y(m)|b)= 1= 5bT[ 7(m)—b],
operator is given by m
L (bl(36B)~2(m)+ B2y )= 2
D(m)=5[1+m+(1-myse(HW], (34 7 (1-m)?
X[ 7"(m)=b"[ »(m)—b], (39)

with 0=m=1 describing fermions with positive mass all the
way from zero to infinity and wherél,, is the Hermitian ~Where

Wilson-Dirac operator with a negative Wilson-Dirac masson > _ . _ _

the lattice[15,16,22. Here e(x) indicates the sign function. Ho(m)7(m)=b  with Ho(m)=7ysD(m), ysb==b.

The external fermion propagator is given by (40)
We note that
D Ym)=(1-m) YD ¥m)—1]. 35
(m)=( ) [D" 7 (m)—1] (35 H2(m)=D"(m)D(m)
The subtraction ain=0 is evident from the original overlap =d(m)DT(m)
formalism[21], and the massless propagator anticommutes ,
with ys [15]. With our choice of subtraction and overall _ ol 2 m
normalization the propagator satisfies the relation =(1-m%)| Hg(0) + 1—m?|’ (42)
m(b|[ D ~(m)1?|b) with
—/hID-1 oy _ 1 1
=(b|D~*(m)|b) V b satisfying ys|b)=*|b) H(Z)(O)Xr: E_i_z(,ysil)e(HW)}Xi
(36)

. . . with ysx.=*x.. (42
for all values ofm in an arbitrary gauge field background

[16]. If chiral symmetry is broken, the right-hand side of Eq. Equation(41) implies that we can solve the set of equations
(36) is nonzero in the massless limit, implying that the piOﬂH(Z)(m) n(m)=Db for several masses simultaneously(for
mass goes to zero as the square root of the fermion masgre same right-hand) using the multiple Krylov space
Since[ ysD(m)]* commutes withys, its eigenvectors are solver described in Ref20]. In our tests we used fermion
chiral. In the basis wherfeysD(m)]? is diagonal,ysD(m) is  masses from 0 to 0.999. However, for comparisons to RMT
block diagonal with each block being ax2 matrix [16].  we only consider the fermion mass range from: 10~ up
Exact zero eigenvalues ¢fysD(m)]? are paired with unit tg 0.999.

eigenvalues of ysD(m)]? with the opposite chirality. These  The first term on the right-hand side of B§7) is due to
eigenvectors of ysD(m)]? are also eigenvectors @(m)  the presence ofi| exact zero modes in a fixed gauge field
and therefore the topological zero mode${in) are chiral.  background. By working in the chiral sector where
We shall denote the nonzero eigenvalueg gfD(m)]* by  [ysD(m)]? has no zero modes, it is possible to compute the
A2 with 0<\?<1. In terms of these eigenvalues, the chiralsecond term in Eq(37) and investigate the onset of chiral
condensate and chiral susceptibility in a fixed gauge fieldymmetry breaking on the latti¢@6]. Note that the relation
background are given hjyL6] (37) is an exact identity at any lattice spacing. It is of the
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SU(3) fund (unitary), g=56.1, 4* SU(2) fund (orthogonal), f=1.8, 4*

FIG. 4. The microscopic spectral density for
overlap fermions ina) the fundamental represen-

I

o 5 10 15 0‘00 5 10 15 tation of SU3) (unitary), (b) the fundamental
ARV AZV representation of S@@) (orthogonal, and(c) the
SU(R) adj (symplectic), =2.0, 4* adjoint representation of SB) (symplectig. De-
B e viations from the analytical predictionsmooth
L =0 1 curves beyond a few oscillations are due to the
081 (@ R ] rather small physical volumes considered.

o AR A

Ps

o2 Y/ -

oolad il il

0 5 10 15 20
AZV

same form as Eq3), up to terms vanishing with the ultra- predictions of RMT. In Fig. 4 are the results for different
violet cutoff. The bare fermion mass enters the overlap Diradopological sectors for all the ensembles. The curves are the
operator in a nontrivial way and is proportional to the masspredictions using the infinite volum& previously deter-
parametem in Eq. (34) only for smallm, i.e., only up to  mined[13]. We see good agreement for the first oscillation
terms of relative®(a?). The proportionality factoZ,, de-  (essentially the lowest eigenvalue contribujiéor all topo-
pends in particular on the mass in the Wilson-Dirac operatotogical sectors and the best agreement in the symplectic case
used[16]. Since Z,, is the inverse of the wave function in Fig. 4(c). However, the data rapidly deviate up from the
renormalization constarjtl6], the rescaled mass parameter curve for higher eigenvalues. This is a finite-volume effect
n=m2V is independent of these factors and agrees with since as the volume increases the scale of the eigenvalues
the continuum definition up to terms vanishing with the ul-
traviolet cutoff.

The infinite-volume chiral condensate differs signifi-
cantly, at the samg values, from that of staggered fermions.
However, in the cases we shall present here this one single
parameter> has already been extracted to high precision
from the distribution of the smallest Dirac operator eigen-
value [13]. The analytical predictions fok ,(u) are thus
parameter free also in these cases.

On all the gauge configurations used for the measurement
of the condensate, a few low-lying eigenvalues have previ-
ously been determinegd.3]. We thus know the number and
chirality of all zero modes, and hence the topological charge.
As mentioned already, when zero modes are present, we per- ce e =
form the stochastic estimate in the sector with opposite i e A
chirality. In topologically trivial gauge fields, we perform the L - ‘ 1
stochastic estimate in the positive chirality sector. 0.0 b=

We are now ready to test some of the predictions for 0.0 0.5 1.0
overlap fermions in the finite-volume regime. The first ob- AZY
servation is that the universality classes of continuum fermi- FIG. 5. The distribution of the lowest eigenvalue for overlap
ons coincide with those of overlap fermions. We begin byfermions in the orthogonal ensemble. The scale is enlarged to show
comparing the microscopic spectral density({) with the the leading edge of the distribution.

0.8 T T T ‘ T |
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decreases into the region where RMT applies. The infiniteedge of the eigenvalue distributions shown in detail in Fig. 5.
volume chiral condensat® sets the scale for the eigenval-  We continue with tests of the predictions y(w) in the

ues, and since the condensate is larger for staggered fermio@$JE case, using quenched overlap fermions and gauge
compared to overlap fermions at corresponding parametergfoup SU3). Shown in Fig. 6a) are some data for gauge
the eigenvalues for staggered fermions occur closer to zerield sectors withv=0, . .. ,3. Westress that for the sectors
where there is a corresponding better agreement for mor@f nonvanishingr we have subtracted the somewnhat trivial
oscillations with the RMT predictiorfs. v/ term, which otherwise would completely dominate the

Nevertheless, we can expect to find the best agreement Bfot- What is shown is thus not the chiral condengsee se
, with the RMT predictions where the fermion mass is Put rather> (u)/= —|v|/u. The agreement in the=0 sec-

probing the scale of eigenvalues jn(¢) that are in best LOF IS good, but while the data for the=1, 2, and 3 quali-

. — tatively display the right behavior, they are nevertheless
agreement. For the chiral condensate)), the agreement ¢, awhat off the analytical predictions.
with RMT will depend on the overalps(¢), which we re- In Fig. 7(a) we show the subtracted, />2V for the uni-
marked is best for the symplectic case. Since the spectrghry case. As mentioned before, this observable is a more
density does not match the RMT prediction for many oscil-sensitive probe of the eigenvalue distribution at a fixed fer-
lations in the unitary case as seen in Figa)4dwe expect mijon mass and should yield better agreement when the cor-
higher topologies to not be well described by RMT. respondingp¢(¢) is in good agreement with the RMT pre-

In addition, we can expect problems for comparisons ofgictions. We see good agreement for m3V=>0.05 in all
observables for small fermions masses whengdk&) has  topology sectors, but below this value there are deviations
not been adequately sampled, and this problem is most preelated to the lack of small eigenvaluesgdgand the small
nounced in the orthogonal case. Compared to the staggerg@diume. For the orthogonal ensemble we find even worse
fermion example in Fig. 2, we do not have enough statisticggreement fol ,(u)/= — | v|/u shown in Fig. €b), but find
and large enough volumes to adequately sample the leadingsmall mass region (04z=<4) in w,/3?V shown in Fig.

7(b) where we simultaneously have an adequately sampled
distribution of very small eigenvalues and good agreement of

“The energy scale up to which RMT is expected to be valid, calle®s(z) With RMT.

the Thouless energy, is given By ~f2/(SL?) [24]. Using the Ve next turn to gauge group $2) and overlap fermions
Gell-Mann—0Oakes—Renner re|atiofﬁrmi:mq2’ this becomes In the adjoint representation where we find the expected

Erp~ mq/(miLz)_ We expect this Thouless energy to be about thegood agreement with analytical predictions for the 0 and
same for staggered and overlap fermions. Since the average spacihgsectors(we found almost no configurations in the sectors
between eigenvalues is about3%(), RMT is expected to govern of higher topological charge in this cas@hese graphs are
more eigenvalues for staggered than overlap fermions. shown in Figs. &) and 7c).
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The results presented here clearly show the power of the
finite-size analysis that has come out of the study of finite-
volume effective partition functions and random matrix

We have performed a systematic series of Monte Carlaheory. In contrast to conventional finite-size scaling analysis
tests of the analytical predictions for the chiral condensat@ear critical points, we are here in the unusual situation of
and related chiral susceptibilities in the finite-volume scalingknowing not only the right scaling variables, but also
region of Eq.(1). In four dimensions there are three univer- parameter-free exact analytical predictions for the scaling
sality classes with which to compare, conveniently classifieqquantities. In this particular corner of those non-Abelian or
in random matrix theory terminology by means of chiral ver- Apelian gauge theories that support spontaneous breaking of
sions of the three classical matrix ensembles, i.e., CSE, CU%h|ra| symmetry the exact ana|ytica| predictions have thus
and COE. Once the infinite-volume chiral condensatés  very clearly been confirmed by direct numerical studies.
known, there are parameter-free finite-volume scaling func-
tions with which to compare data. As we have shown, results
for all three universality classes with topological change
=0 are nicely r_ep_roduced by staggered fermions. To te_st_the ACKNOWLEDGMENTS
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